On this tutorial, we stroll by way of a sophisticated, end-to-end exploration of Polyfactory, specializing in how we are able to generate wealthy, practical mock information immediately from Python kind hints. We begin by establishing the setting and progressively construct factories for information lessons, Pydantic fashions, and attrs-based lessons, whereas demonstrating customization, overrides, calculated fields, and the technology of nested objects. As we transfer by way of every snippet, we present how we are able to management randomness, implement constraints, and mannequin real-world constructions, making this tutorial immediately relevant to testing, prototyping, and data-driven growth workflows. Try the FULL CODES right here.
import subprocess
import sys
def install_package(bundle):
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", package])
packages = [
"polyfactory",
"pydantic",
"email-validator",
"faker",
"msgspec",
"attrs"
]
for bundle in packages:
attempt:
install_package(bundle)
print(f"✓ Put in {bundle}")
besides Exception as e:
print(f"✗ Failed to put in {bundle}: {e}")
print("n")
print("=" * 80)
print("SECTION 2: Primary Dataclass Factories")
print("=" * 80)
from dataclasses import dataclass
from typing import Listing, Optionally available
from datetime import datetime, date
from uuid import UUID
from polyfactory.factories import DataclassFactory
@dataclass
class Handle:
road: str
metropolis: str
nation: str
zip_code: str
@dataclass
class Individual:
id: UUID
title: str
e-mail: str
age: int
birth_date: date
is_active: bool
deal with: Handle
phone_numbers: Listing[str]
bio: Optionally available[str] = None
class PersonFactory(DataclassFactory[Person]):
go
individual = PersonFactory.construct()
print(f"Generated Individual:")
print(f" ID: {individual.id}")
print(f" Title: {individual.title}")
print(f" E-mail: {individual.e-mail}")
print(f" Age: {individual.age}")
print(f" Handle: {individual.deal with.metropolis}, {individual.deal with.nation}")
print(f" Cellphone Numbers: {individual.phone_numbers[:2]}")
print()
individuals = PersonFactory.batch(5)
print(f"Generated {len(individuals)} individuals:")
for i, p in enumerate(individuals, 1):
print(f" {i}. {p.title} - {p.e-mail}")
print("n")
We arrange the setting and guarantee all required dependencies are put in. We additionally introduce the core concept of utilizing Polyfactory to generate mock information from kind hints. By initializing the essential dataclass factories, we set up the inspiration for all subsequent examples.
print("=" * 80)
print("SECTION 3: Customizing Manufacturing unit Conduct")
print("=" * 80)
from faker import Faker
from polyfactory.fields import Use, Ignore
@dataclass
class Worker:
employee_id: str
full_name: str
division: str
wage: float
hire_date: date
is_manager: bool
e-mail: str
internal_notes: Optionally available[str] = None
class EmployeeFactory(DataclassFactory[Employee]):
__faker__ = Faker(locale="en_US")
__random_seed__ = 42
@classmethod
def employee_id(cls) -> str:
return f"EMP-{cls.__random__.randint(10000, 99999)}"
@classmethod
def full_name(cls) -> str:
return cls.__faker__.title()
@classmethod
def division(cls) -> str:
departments = ["Engineering", "Marketing", "Sales", "HR", "Finance"]
return cls.__random__.selection(departments)
@classmethod
def wage(cls) -> float:
return spherical(cls.__random__.uniform(50000, 150000), 2)
@classmethod
def e-mail(cls) -> str:
return cls.__faker__.company_email()
staff = EmployeeFactory.batch(3)
print("Generated Workers:")
for emp in staff:
print(f" {emp.employee_id}: {emp.full_name}")
print(f" Division: {emp.division}")
print(f" Wage: ${emp.wage:,.2f}")
print(f" E-mail: {emp.e-mail}")
print()
print()
print("=" * 80)
print("SECTION 4: Area Constraints and Calculated Fields")
print("=" * 80)
@dataclass
class Product:
product_id: str
title: str
description: str
value: float
discount_percentage: float
stock_quantity: int
final_price: Optionally available[float] = None
sku: Optionally available[str] = None
class ProductFactory(DataclassFactory[Product]):
@classmethod
def product_id(cls) -> str:
return f"PROD-{cls.__random__.randint(1000, 9999)}"
@classmethod
def title(cls) -> str:
adjectives = ["Premium", "Deluxe", "Classic", "Modern", "Eco"]
nouns = ["Widget", "Gadget", "Device", "Tool", "Appliance"]
return f"{cls.__random__.selection(adjectives)} {cls.__random__.selection(nouns)}"
@classmethod
def value(cls) -> float:
return spherical(cls.__random__.uniform(10.0, 1000.0), 2)
@classmethod
def discount_percentage(cls) -> float:
return spherical(cls.__random__.uniform(0, 30), 2)
@classmethod
def stock_quantity(cls) -> int:
return cls.__random__.randint(0, 500)
@classmethod
def construct(cls, **kwargs):
occasion = tremendous().construct(**kwargs)
if occasion.final_price is None:
occasion.final_price = spherical(
occasion.value * (1 - occasion.discount_percentage / 100), 2
)
if occasion.sku is None:
name_part = occasion.title.exchange(" ", "-").higher()[:10]
occasion.sku = f"{occasion.product_id}-{name_part}"
return occasion
merchandise = ProductFactory.batch(3)
print("Generated Merchandise:")
for prod in merchandise:
print(f" {prod.sku}")
print(f" Title: {prod.title}")
print(f" Worth: ${prod.value:.2f}")
print(f" Low cost: {prod.discount_percentage}%")
print(f" Last Worth: ${prod.final_price:.2f}")
print(f" Inventory: {prod.stock_quantity} models")
print()
print()
We give attention to producing easy however practical mock information utilizing dataclasses and default Polyfactory habits. We present find out how to shortly create single cases and batches with out writing any customized logic. It helps us validate how Polyfactory mechanically interprets kind hints to populate nested constructions.
print("=" * 80)
print("SECTION 6: Advanced Nested Buildings")
print("=" * 80)
from enum import Enum
class OrderStatus(str, Enum):
PENDING = "pending"
PROCESSING = "processing"
SHIPPED = "shipped"
DELIVERED = "delivered"
CANCELLED = "cancelled"
@dataclass
class OrderItem:
product_name: str
amount: int
unit_price: float
total_price: Optionally available[float] = None
@dataclass
class ShippingInfo:
service: str
tracking_number: str
estimated_delivery: date
@dataclass
class Order:
order_id: str
customer_name: str
customer_email: str
standing: OrderStatus
objects: Listing[OrderItem]
order_date: datetime
shipping_info: Optionally available[ShippingInfo] = None
total_amount: Optionally available[float] = None
notes: Optionally available[str] = None
class OrderItemFactory(DataclassFactory[OrderItem]):
@classmethod
def product_name(cls) -> str:
merchandise = ["Laptop", "Mouse", "Keyboard", "Monitor", "Headphones",
"Webcam", "USB Cable", "Phone Case", "Charger", "Tablet"]
return cls.__random__.selection(merchandise)
@classmethod
def amount(cls) -> int:
return cls.__random__.randint(1, 5)
@classmethod
def unit_price(cls) -> float:
return spherical(cls.__random__.uniform(5.0, 500.0), 2)
@classmethod
def construct(cls, **kwargs):
occasion = tremendous().construct(**kwargs)
if occasion.total_price is None:
occasion.total_price = spherical(occasion.amount * occasion.unit_price, 2)
return occasion
class ShippingInfoFactory(DataclassFactory[ShippingInfo]):
@classmethod
def service(cls) -> str:
carriers = ["FedEx", "UPS", "DHL", "USPS"]
return cls.__random__.selection(carriers)
@classmethod
def tracking_number(cls) -> str:
return ''.be a part of(cls.__random__.selections('0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ', okay=12))
class OrderFactory(DataclassFactory[Order]):
@classmethod
def order_id(cls) -> str:
return f"ORD-{datetime.now().12 months}-{cls.__random__.randint(100000, 999999)}"
@classmethod
def objects(cls) -> Listing[OrderItem]:
return OrderItemFactory.batch(cls.__random__.randint(1, 5))
@classmethod
def construct(cls, **kwargs):
occasion = tremendous().construct(**kwargs)
if occasion.total_amount is None:
occasion.total_amount = spherical(sum(merchandise.total_price for merchandise in occasion.objects), 2)
if occasion.shipping_info is None and occasion.standing in [OrderStatus.SHIPPED, OrderStatus.DELIVERED]:
occasion.shipping_info = ShippingInfoFactory.construct()
return occasion
orders = OrderFactory.batch(2)
print("Generated Orders:")
for order in orders:
print(f"n Order {order.order_id}")
print(f" Buyer: {order.customer_name} ({order.customer_email})")
print(f" Standing: {order.standing.worth}")
print(f" Gadgets ({len(order.objects)}):")
for merchandise so as.objects:
print(f" - {merchandise.amount}x {merchandise.product_name} @ ${merchandise.unit_price:.2f} = ${merchandise.total_price:.2f}")
print(f" Complete: ${order.total_amount:.2f}")
if order.shipping_info:
print(f" Transport: {order.shipping_info.service} - {order.shipping_info.tracking_number}")
print("n")
We construct extra complicated area logic by introducing calculated and dependent fields inside factories. We present how we are able to derive values comparable to last costs, totals, and delivery particulars after object creation. This permits us to mannequin practical enterprise guidelines immediately inside our check information turbines.
print("=" * 80)
print("SECTION 7: Attrs Integration")
print("=" * 80)
import attrs
from polyfactory.factories.attrs_factory import AttrsFactory
@attrs.outline
class BlogPost:
title: str
creator: str
content material: str
views: int = 0
likes: int = 0
revealed: bool = False
published_at: Optionally available[datetime] = None
tags: Listing[str] = attrs.subject(manufacturing facility=listing)
class BlogPostFactory(AttrsFactory[BlogPost]):
@classmethod
def title(cls) -> str:
templates = [
"10 Tips for {}",
"Understanding {}",
"The Complete Guide to {}",
"Why {} Matters",
"Getting Started with {}"
]
matters = ["Python", "Data Science", "Machine Learning", "Web Development", "DevOps"]
template = cls.__random__.selection(templates)
subject = cls.__random__.selection(matters)
return template.format(subject)
@classmethod
def content material(cls) -> str:
return " ".be a part of(Faker().sentences(nb=cls.__random__.randint(3, 8)))
@classmethod
def views(cls) -> int:
return cls.__random__.randint(0, 10000)
@classmethod
def likes(cls) -> int:
return cls.__random__.randint(0, 1000)
@classmethod
def tags(cls) -> Listing[str]:
all_tags = ["python", "tutorial", "beginner", "advanced", "guide",
"tips", "best-practices", "2024"]
return cls.__random__.pattern(all_tags, okay=cls.__random__.randint(2, 5))
posts = BlogPostFactory.batch(3)
print("Generated Weblog Posts:")
for submit in posts:
print(f"n '{submit.title}'")
print(f" Creator: {submit.creator}")
print(f" Views: {submit.views:,} | Likes: {submit.likes:,}")
print(f" Revealed: {submit.revealed}")
print(f" Tags: {', '.be a part of(submit.tags)}")
print(f" Preview: {submit.content material[:100]}...")
print("n")
print("=" * 80)
print("SECTION 8: Constructing with Particular Overrides")
print("=" * 80)
custom_person = PersonFactory.construct(
title="Alice Johnson",
age=30,
e-mail="[email protected]"
)
print(f"Customized Individual:")
print(f" Title: {custom_person.title}")
print(f" Age: {custom_person.age}")
print(f" E-mail: {custom_person.e-mail}")
print(f" ID (auto-generated): {custom_person.id}")
print()
vip_customers = PersonFactory.batch(
3,
bio="VIP Buyer"
)
print("VIP Prospects:")
for buyer in vip_customers:
print(f" {buyer.title}: {buyer.bio}")
print("n")
We lengthen Polyfactory utilization to validated Pydantic fashions and attrs-based lessons. We reveal how we are able to respect subject constraints, validators, and default behaviors whereas nonetheless producing legitimate information at scale. It ensures our mock information stays appropriate with actual utility schemas.
print("=" * 80)
print("SECTION 9: Area-Degree Management with Use and Ignore")
print("=" * 80)
from polyfactory.fields import Use, Ignore
@dataclass
class Configuration:
app_name: str
model: str
debug: bool
created_at: datetime
api_key: str
secret_key: str
class ConfigFactory(DataclassFactory[Configuration]):
app_name = Use(lambda: "MyAwesomeApp")
model = Use(lambda: "1.0.0")
debug = Use(lambda: False)
@classmethod
def api_key(cls) -> str:
return f"api_key_{''.be a part of(cls.__random__.selections('0123456789abcdef', okay=32))}"
@classmethod
def secret_key(cls) -> str:
return f"secret_{''.be a part of(cls.__random__.selections('0123456789abcdef', okay=64))}"
configs = ConfigFactory.batch(2)
print("Generated Configurations:")
for config in configs:
print(f" App: {config.app_name} v{config.model}")
print(f" Debug: {config.debug}")
print(f" API Key: {config.api_key[:20]}...")
print(f" Created: {config.created_at}")
print()
print()
print("=" * 80)
print("SECTION 10: Mannequin Protection Testing")
print("=" * 80)
from pydantic import BaseModel, ConfigDict
from typing import Union
class PaymentMethod(BaseModel):
model_config = ConfigDict(use_enum_values=True)
kind: str
card_number: Optionally available[str] = None
bank_name: Optionally available[str] = None
verified: bool = False
class PaymentMethodFactory(ModelFactory[PaymentMethod]):
__model__ = PaymentMethod
payment_methods = [
PaymentMethodFactory.build(type="card", card_number="4111111111111111"),
PaymentMethodFactory.build(type="bank", bank_name="Chase Bank"),
PaymentMethodFactory.build(verified=True),
]
print("Fee Methodology Protection:")
for i, pm in enumerate(payment_methods, 1):
print(f" {i}. Sort: {pm.kind}")
if pm.card_number:
print(f" Card: {pm.card_number}")
if pm.bank_name:
print(f" Financial institution: {pm.bank_name}")
print(f" Verified: {pm.verified}")
print("n")
print("=" * 80)
print("TUTORIAL SUMMARY")
print("=" * 80)
print("""
This tutorial coated:
1. ✓ Primary Dataclass Factories - Easy mock information technology
2. ✓ Customized Area Turbines - Controlling particular person subject values
3. ✓ Area Constraints - Utilizing PostGenerated for calculated fields
4. ✓ Pydantic Integration - Working with validated fashions
5. ✓ Advanced Nested Buildings - Constructing associated objects
6. ✓ Attrs Help - Various to dataclasses
7. ✓ Construct Overrides - Customizing particular cases
8. ✓ Use and Ignore - Specific subject management
9. ✓ Protection Testing - Guaranteeing complete check information
Key Takeaways:
- Polyfactory mechanically generates mock information from kind hints
- Customise technology with classmethods and interior decorators
- Helps a number of libraries: dataclasses, Pydantic, attrs, msgspec
- Use PostGenerated for calculated/dependent fields
- Override particular values whereas conserving others random
- Good for testing, growth, and prototyping
For extra info:
- Documentation: https://polyfactory.litestar.dev/
- GitHub: https://github.com/litestar-org/polyfactory
""")
print("=" * 80)
We cowl superior utilization patterns comparable to express overrides, fixed subject values, and protection testing situations. We present how we are able to deliberately assemble edge instances and variant cases for strong testing. This last step ties all the things collectively by demonstrating how Polyfactory helps complete and production-grade check information methods.
In conclusion, we demonstrated how Polyfactory permits us to create complete, versatile check information with minimal boilerplate whereas nonetheless retaining fine-grained management over each subject. We confirmed find out how to deal with easy entities, complicated nested constructions, and Pydantic mannequin validation, in addition to express subject overrides, inside a single, constant factory-based strategy. General, we discovered that Polyfactory permits us to maneuver sooner and check extra confidently, because it reliably generates practical datasets that carefully mirror production-like situations with out sacrificing readability or maintainability.
Try the FULL CODES right here. Additionally, be happy to comply with us on Twitter and don’t neglect to hitch our 100k+ ML SubReddit and Subscribe to our E-newsletter. Wait! are you on telegram? now you may be a part of us on telegram as effectively.

